1. (25 points) Among 290 children who were not wearing seat belts, 50 were severly injured. Among 123 children using seat belts, 16 were severly injured (based on data from "Morbidity Among Pediatric Motor Vehicle Crash Victims: The Effectiveness of Seat Belts," by Osberg and Di Scala, *American Journal of Public Health*, Vol. 82, No. 3). Is there sufficient sample evidence to conclude that the rate of severe injuries is higher for children not wearing seat belts. Test the claim using $\alpha = 0.01$ and the <u>*P*-value method</u>. Show all calculations.

Check the Assumptions
$$\frac{n\hat{p}_{1} = 5c_{1} + n\hat{q}_{1} = 240}{n\hat{p}_{2} = 16}, \frac{n\hat{q}_{2} = 107}{n\hat{q}_{1} = 107}$$

Null Hypothesis $\frac{H_{0}: \hat{p}_{1} \leq \hat{p}_{2}}{H_{1}: \hat{p}_{1} > \hat{p}_{2}}$
Test Statistic $\frac{Z = 1.07}{\tilde{p} = \frac{50 + 16}{\lambda'70 + 123} = \frac{66}{413}, \quad \tilde{q} = \frac{347}{413}$
 $Z = \frac{\frac{50}{\lambda'70 + 123} = \frac{16}{413}, \quad \tilde{q} = \frac{347}{413}$
 $Z = \frac{\frac{50}{\lambda'70} - \frac{16}{123}}{\sqrt{\left(\frac{66}{413}\right)\left(\frac{347}{413}\right)\left(\frac{1}{240} + \frac{1}{133}\right)}} \approx 1.07$
 P -value $\frac{1423}{\sqrt{1423}}$ P - $v_{a}l_{ce} = P(Z > 1.07)$
 $= .5 - .3577 = .1423$

2. (35 points) The following sample data represents measured nicotine contents of randomly selected filtered and non-filtered king-size cigarettes. All measurements are in milligrams, and the data are from the Federal Trade Commission. Use a 0.05 significance level to test the claim that the mean nicotine amount of filtered king-size cigarettes is less than the mean nicotine level of non-filtered king-size cigarettes. Assume samples are from populations that are normally distributed. Show all calculations.

	Fi	ltered Kings	Non-filtered Kings		
		$n_1 = 21$	$n_2 = 8$		
	-	$\overline{X}_1 = 0.94$	$\overline{X}_2 = 1.65$		
		$s_1 = 0.31$	$s_2 = 0.16$		
(a)) Show that the samples co	ome from pop	ulations with the sam 2	e variance.	
	Null Hypothesis H_0 : $\sigma_1 = \sigma_2$				
	$\frac{1}{2}$				
	Test Statistic	est Statistic $1 - \frac{1}{52^2} = \frac{1}{16^2} = \frac{3}{16} = \frac{3}{5} = \frac{3}{16} = \frac{3}{5} $			
	Critical Value F_{crt}	+ = 4.4	17		
	Decision and Reason Fail to reject Ho since 375 < 1				5 < 4.47
	summarize: We cannot reject claim that this				
	population	s have	e the sum	ne Varia	MCC
	/ '				

(b) Test the claim in the original problem statement.

Null Hypothesis $\frac{H_0}{H_1} \cdot \frac{M_1 \ge M_2}{M_1 \le M_2}$ Alternative Hypothesis $\frac{H_1}{H_1} \cdot \frac{M_1 \le M_2}{M_2}$ Test Statistic $\frac{t = -6.13}{27} = \frac{30 \cdot .31^2 + 7 \cdot .16^2}{27} \approx .0778$ $t = \frac{.94 - 1.65}{\sqrt{(.0778)(\frac{t}{21} + \frac{t}{8})}} \approx -6.13$

Problem 3 continued

3. (12 points) Matching (write the appropriate letter in the provided blank):

4. (30 points) Captopril is a drug designed to lower systolic blood pressure. When subjects were tested with this drug, their systolic blood pressure readings (in mm of mercury) were measured before and after the drug was taken, with the results given below ("Essential Hypertension Effect of an Oral Inhibitor of Angiotension-Converting Enzyme," by MacGregor, et al., *British Medical Journal*, Vol. 2.). Is there sufficient evidence to support the claim that captopril is effective in changing systolic blood pressure? Use $\alpha = 0.02$ and the Confidence Interval method. Assume all variables are normally distributed.